Exact categories, big Cohen-Macaulay modules and finite representation type
نویسندگان
چکیده
One of the first remarkable results in representation theory artin algebras, due to Auslander and Ringel-Tachikawa, is characterisation when an algebra representation-finite. In this paper, we investigate aspects representation-finiteness general context exact categories sense Quillen. framework, introduce “big objects” prove Auslander-type “splitting-big-objects” theorem. Our approach generalises unifies known from literature. As a further application our methods, extend theorems Ringel-Tachikawa arbitrary dimension, i.e. characterise Cohen-Macaulay order over complete regular local ring finite type.
منابع مشابه
Mutations in triangulated categories and rigid Cohen-Macaulay modules
We introduce the notion of mutation on the set of n-cluster tilting subcategories in a triangulated category with Auslander-Reiten-Serre duality. Using this idea, we are able to obtain the complete classifications of rigid Cohen-Macaulay modules over certain Veronese subrings.
متن کاملMutation in triangulated categories and rigid Cohen-Macaulay modules
We introduce the notion of mutation on the set of n-cluster tilting subcategories in a triangulated category with Auslander-Reiten-Serre duality. Using this idea, we are able to obtain the complete classifications of rigid Cohen-Macaulay modules over certain Veronese subrings.
متن کاملLocal Rings of Finite Cohen-macaulay Type
Let (R,m) be a local Cohen-Macaulay ring whose m-adic completion R̂ has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if R̂ has finite Cohen-Macaulay type. We show also that the hypersurface k[[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type if and only if k [[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type, whe...
متن کاملLiaison with Cohen–Macaulay modules
We describe some recent work concerning Gorenstein liaison of codimension two subschemes of a projective variety. Applications make use of the algebraic theory of maximal Cohen–Macaulay modules, which we review in an Appendix.
متن کاملRESULTS ON ALMOST COHEN-MACAULAY MODULES
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2022
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2021.106891